博客
关于我
博弈论讲解(二)
阅读量:164 次
发布时间:2019-02-27

本文共 827 字,大约阅读时间需要 2 分钟。

文章目录

理论知识
(1)、若面临末状态者为获胜则末状态为胜态否则末状态为必败态。
(2)、一个局面是胜态的充要条件是该局面进行某种决策后会成为必败态。
(3)、一个局面是必败态的充要条件是该局面无论进行何种决策均会成为胜态

斐波那契博弈

问题:

有一堆数量为n的石子,游戏双方轮流取石子,满足:

(1)先手不能在第一次把所有的石子取完;

(2)之后每次可以取的石子数介于1到对手刚取的石子数的2倍之间(包含1和对手刚取的石子数的2倍)。

约定取走最后一个石子的人为赢家。

求必败态

结论

当n为斐波那契数时,先手必败。

证明:

齐肯多夫(zeckendorf)定理:

任何正整数都可以表示成若干个不连续的斐波那契数(不包括第一个斐波那契数)之和
比如n=54,
n还可以写成:n=2+5+13+34
先手A取两个,后手B取的范围是1~4,也就是5之后取不了,那第五个肯定被A拿了(因为至少拿一个),也就是拿走了5的最后一颗,接下来,A也能拿走13的最后一颗,拿走34的最后一颗,这样A就赢了。
反之如果n是斐波那契数,A就输了

尼姆博奕(Nimm Game)

问题:

有三堆各若干个物品,数量分别是(a,b,c),两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜。

结论:

如果每堆物品数全部异或起来,得到的值时0则先手必败,反之先手则赢

(a,b,c)的必败态等于a ^ b ^ c =0

如果石头有n堆,如果每堆数目进行异或后为0,则是必败态

证明:

略。。

代码:

for(int i=1;i<=n;i++)          {                 cin>>ans;              sum^=ans;          }          if(sum==0)  cout<<"后手必胜"<

公平组合博弈(Impartial Combinatori Games)

这个第一次见,还没搞懂

转载地址:http://ymwb.baihongyu.com/

你可能感兴趣的文章
mysql5.7 安装版 表不能输入汉字解决方案
查看>>
MySQL5.7.18主从复制搭建(一主一从)
查看>>
MySQL5.7.19-win64安装启动
查看>>
mysql5.7.19安装图解_mysql5.7.19 winx64解压缩版安装配置教程
查看>>
MySQL5.7.37windows解压版的安装使用
查看>>
mysql5.7免费下载地址
查看>>
mysql5.7命令总结
查看>>
mysql5.7安装
查看>>
mysql5.7性能调优my.ini
查看>>
MySQL5.7新增Performance Schema表
查看>>
Mysql5.7深入学习 1.MySQL 5.7 中的新增功能
查看>>
Webpack 之 basic chunk graph
查看>>
Mysql5.7版本单机版my.cnf配置文件
查看>>
mysql5.7的安装和Navicat的安装
查看>>
mysql5.7示例数据库_Linux MySQL5.7多实例数据库配置
查看>>
Mysql8 数据库安装及主从配置 | Spring Cloud 2
查看>>
mysql8 配置文件配置group 问题 sql语句group不能使用报错解决 mysql8.X版本的my.cnf配置文件 my.cnf文件 能够使用的my.cnf配置文件
查看>>
MySQL8.0.29启动报错Different lower_case_table_names settings for server (‘0‘) and data dictionary (‘1‘)
查看>>
MYSQL8.0以上忘记root密码
查看>>
Mysql8.0以上重置初始密码的方法
查看>>